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The chemical reaction
1 The problem

calcium carbonate sulfuric acid gypsum

CaCO, + H,SO, + H,0 — CaSO, - 2H,0 + CO,
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Challenges in Modeling Corrosion
1 The problem

Developing a flexible and accurate corrosion model is challenging due to its strong
dependence on various environmental factors, including:

e Material composition,
Variability in atmospheric pollutants,

Temperature variations,

Relative humidity levels,
Atmospheric metal pollutants, and more.
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The state of the art

2 The state of the art

A continuous deterministic model

O (p(e)s) =V - (p(c)Vs) — Ap(c)sc s(0,x) = so
oc = —\p(c)sc c(0,x) = co

Porosity: ¢p(c) =A+ Be
R. Guarguaglini and R. Natalini (2005)
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The state of the art

2 The state of the art

Stochastic boundary conditions:

S(t7 0) - ¢(f)
() = aly—p(©)de+ o/ () — D(O)dW,.

F. Arceci, M. Maurelli, D. Morale, and S. Ugolini (2023)

A fully stochastic particle model:

dX; = By (M,)dt + e dWy,
H  €{C,S, G D}

D. Morale, G. Rui, and S. Ugolini (to appear)
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The variables: particles and environment

3 The stochastic-continuum model

The acid particles state:

XLHYi=1,..,N xt: R, »DcCR?
H : R, — {0="adlive’, 1 = "dead"}

The empirical measure and density of the active particles:

N
1
Vg\](dX) = N Zs(XéHé) (dX X {O})
i=1
uy(t,x) = (Kx1})(x) K € L*°(D) Estimating kernel
Carbonate and Gypsum densities: c(t,x),g(t,x): Ry xD — Ry
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A hybrid model
3 The stochastic-continuum model

Stochastic particles in a random continuum environment

dxi = Fl«(X¢, Hy)dt + F}, (X{, ¢, g)dt + odW],
B, = Hj -+ 11 (5 AXE HE )ds )

0

EC(E X) =-A C(ta X) uN(t? X)a

0

—g(t,x) =+Ac(t,x)un(t,x),

ot
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tel0, Ty, ie{1,...

te[0,T]
(t,x) € [0,T] x D,

(t,x) € [0,T] x D.



The chemical reaction

3 The stochastic-continuum model

The reaction counter: a non homogeneous Poisson process

. t
N' (/ A (XL HL c) ds)
0

A (XL, Hi,c) = Ac(t,Xp) Lo(H})

IT'(r)

The reaction time Tj: the first (and only) jump time of Hi(t), or equivalently
given a random variable Z ~ exp(1):

t
T; = inf {z < / A" (X, HL, c) ds} :
0
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The Lennard-Jones potential

Foon(Xe He) = — Y V<I><

Particle-particle interaction

Xi— X )
J,H)t:O
J#i
10— :
1
repulsion attraction —d(r)
<+ >
| ----F(n)
. . I
The Lennard Jones potential is strongly repul- . strong repulsion
sive and weakly attractive at close range 5l

r

o =an[(3)" - ("]
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Particle-field interaction

A non local effect of porosity

V—Xi i
= f(ly —Xi|, c(t,y), g(t,y)) dy dt

F. (Xlcg):= .
env( t g) ’y D‘y—XH

Interaction directed towards a higher con-
centration of gypsum:

f(r.e,g) = . Jgrg e " 1(0,00)(9) L(or (1)
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The complete system

4 Well posedness for strongly repulsive singular interactions

Stochastic particles in a random continuum environment

14/41

dxt = FL.(Xe, Hy)dt + Fi\ (X[, ¢, g)dt + odW, te[0, Ty, ie{1,..
H —Hi + 11 (fOtA(x;‘,H;',c)ds), te0,T]

%c(t, x) = —=MXc(t,x) un(t,x), (t,x) € [0,T] x D,
%g(t, x) =+Ac(t,x) un(t,x), (t,x) € [0,T] x D.
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Pairwise interaction - singular drifts

4 Well posedness for strongly repulsive singular interactions

For a wide class of singular drifts well posedness has been proven. Despite that, the
regularity required is much higher than the one we have.

The Coulomb potential

i The Lennard Jones potential
J.G. Liu and R. Yang. (2016)

C A B

=@ ) = L~

15/41



The main result

4 Well posedness for strongly repulsive singular interactions

Well Posedness of Lennard-Jones stochastic interacting particles

The system

U

Xt = 32, VOXE — X])dt + odW! Xield telo,T .
(X)je=0 = X§ i=1,.,N

admits a unique, global, strong solution provided that the initial data are independent
and identically distributed, E [|Xo|?] < co and almost certainly [X) — X{| > € > 0 Vi # j.

In particular almost surely Xi + X for all t € [0, T, i # j.
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The aim of the proof: Non collision among particles

4 Well posedness for strongly repulsive singular interactions

If there exists two particles Xi,X{ colliding with each other for some time t < oo, then

F(X! — X]) = oo and the solution to (1) breaks up. We prove that this almost surely does
not happen in a finite time.

This is equivalent of asking that given a time horizon T > 0

limP(r. < T) =0

e—0
where

Te := inf {t € [0,2T]: rgin]XtiE - X/ < e} .
i
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A regularized problem

4 Well posedness for strongly repulsive singular interactions

Properties:
1. F. € CY(RY)

dXie = " F(Xi — XI)dt + odW; 2. Fe(x) = F(x) Vx| =€
7 3. |Fo(x)| < min{=, |F(x)[}

Xs =,
4. |V F(X)| < i

5 & (x) — +oo.

e—0t
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A regularized problem

4 Well posedness for strongly repulsive singular interactions

We approximate with the Taylor polinomial at the first order in [0, €]

" -3
Fu(r) = — 1990 (ad + 1) (5)*2 - 25 ()M (r— OF, refo,q
RO R ORI P>
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A regularized problem

4 Well posedness for strongly repulsive singular interactions
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A more compact notation

4 Well posedness for strongly repulsive singular interactions

We choose a more compact notation for the interactions:

oy = o (X -x)

R = F (X -x)
N )

cI>§ = Z éle‘,]t/\n
ij=1
i#j
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Step 1: an Ito equation for the interaction

4 Well posedness for strongly repulsive singular interactions

Applying the It6 formula to the overall interaction ®; we obtain

2
tATe N N - 0,2 tATe N .
<I>§:<I>0+Mm—z/ SO S ds—|—2/ S AdY,ds
0 =1\ j=1 0 =1
J#i i#j
where M; . is the martingale
N tATe | ) X
Mo = 0 3 / FiJ (Wi — dwl).
ij=1"0
i#j
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Step 2: some estimates

4 Well posedness for strongly repulsive singular interactions

Given the Lennard Jones force F defined above, for any triplets of particles i, j, k we have

Fii. (F‘i,k _ﬁjk) > —G(i,j,k)

where
G(i.j, k) = H2+<F (%0)+2H> max{]ﬁiﬂ,]f"vkuﬁjyk‘}7
F(ro) = 0,
—-H = rrn>iélF(r).
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Step 2: some estimates

4 Well posedness for strongly repulsive singular interactions

Given the Lennard Jones force F defined above, for any N > 2

2

EN: ZFiJ = EN: (Fij)z -2 Z G(iajv k)

i=1 | j=1 i=1 j=i+1 1<i<j<k<N

with G(i,j, k) obtained in Lemma 2.

24/41



Step 2: some estimates

4 Well posedness for strongly repulsive singular interactions

2

2> YRS - ‘722 Y AdY >—cy  Vee[o,r]

i\ A ijA
where:
Cy =2 (ID [-1—2v-2) (F (%0) +3H) F(rw)|
F(ry) > U;ACI)(rN) T 2(N—2) [HZ + (2H +F (%0)) F(rN)} .
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Some estimates
4 Well posedness for strongly repulsive singular interactions

Recalling
2
N . 0.2 tATe N .
1 1
j_E : Fetls ds + 7 /0 E A(I)g’ls dS,

ij=1
J#i i#j

tATe N
(I>§:(I>O+MMT€—2/ >
0 =1

i=

since the minimum of ®(r) is —e we have ®¢ > —N?¢ and obtain the estimates

sup Miar, > sup @ — g — 2TCy;,
t€[0,T] te[0,T]

inf My, > —N%np— ®g—2CyT.
T
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Step 3: Non collision in finite time

4 Well posedness for strongly repulsive singular interactions

{re<T} C sup ®f > OE
te[0,T]
- sup Mipr, > @5 — ®o — 2TCy
te[0,T]
C { sup Mens, > () — N2 — B — Cy
te[0,T]
< { sup Mpr, > ®(€) — ®o — Cy, inf Mepr, > —
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Step 3: Non collision in finite times

4 Well posedness for strongly repulsive singular interactions

Given R > 0 arbitrary,

P(r. <T) < P|[ sup Mrr, > ®(¢) —R—Cy, inf M¢rn,, > —R—Cy,—R> —®g
t€[0,T] te[0,T]

< P(®o>R)+P| sup Merr, > ®(¢) — R—Cy, inf Mgn,, > —R—Cy
t€[0,T] t€[0,T]

Using Markov inequality:
E[|®ol] _ Ca,

P(®yg >R) < ——0
(0_)_R R
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. Step 3: Non collision in finite times

4 Well posedness for strongly repulsive singular interactions

Defining the first hitting times of the martingale T,, := inf{t > 0 : M;r,. = a} the
second term in the inequality becomes

P sSup Mt/\TE 2 b — a, inf Mt/\TE > —a S IP)(bea S T S T—a) S
tE[O,T} tE[O,T]

< ]P)(Tb—a < T—a)
Doobs Optional sampling theorem for zero mean martingales tells us that for any a,b > 0

a
P(Tb—a < T—a) = E
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Step 3: Non collision in finite times

4 Well posedness for strongly repulsive singular interactions

As a consequence, given R > 0 arbitrary,

P(Te < T) < aﬂ +P inf Mt/\T > —R— CNa sup Mt/\T > P, ( ) R— EN
R t€[0,T] t€[0,T]

|

Doob C<I>o R+ EN . B
P(r. <T) < R + () €$>+ 0, if we choose R = / ®(¢)

—deg>0: Ve<e 7>T as.
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Step 4: convergence to a solution of the original system

4 Well posedness for strongly repulsive singular interactions

The solution to the regularized problem:

Xi(w) = XE(w +Z/ xw xﬁf) ds+oW!  Vtel0,T)].
J#i
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Step 4: convergence to a solution of the original system

4 Well posedness for strongly repulsive singular interactions

The solution to the regularized problem:

Xi(w) = XE(w +Z/ xw xﬁe) ds+oW!  Vtel0,T)].
J#i

The solution is unique, thus:

and the limit is well defined:

31/41



Generalization

4 Well posedness for strongly repulsive singular interactions

Theorem (Well posedness under more general singular drifts.)

The system

{dxg = 30 VOXE — X)dt + p(X)dt + odWi .

( )\r 0 — X6
admits a unique global strong soluﬁon and in particular almost surely Xi == Xj for all

t €[0,T],i#jforany ®(r) = 4 — Tﬁ’ a>f3>0andp: R — R4 is bounded, and
regular enough that the regularized system

dX;.E = ZJ;&I 6tdt+ ,U,( EI)dt+ UdWl
(XtE )|t:0 —XO

admits a unique global strong solution, provided that the initial data is i.i.d. with finite
second moment E [|Xo|?] < oo and such that X)) — X| > 6 > 0Vi#ja.s.
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Evolution of the total mass of calcium and gypsum
5 Numerical experiments

0.8}

— Calcium Carbonate
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Figure: The total mass of calcium carbonate and gypsum, computed as the spatial integral on the
domain. The relative unevenness of the curves comes from the coupling with the stochastic

concentration of the acid.
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Case study 1

5 Numerical experiments

01111 02222 03333 0.4444 0.5556 0.6667 0.7778 0.8889 1

0.00 025 050 075 1.00
Time

Figure: (Top) Evolution of the system at specific times: spatial gypsum (orange) and calcium (black)
densities; active (green circle) and reacted (red cross) sulfuric acid particles locations. (Bottom)
Temporal evolution of the total mass mass of gypsum and calcium carbonate.
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Case study 2

5 Numerical experiments

0 01111 02222 03333 0.4444 0.5556 0.6667 0.7778 0.8889 1

0.00 025 050 075 1.00
Time

Figure: (Top) Evolution of the system at specific times: spatial gypsum (orange) and calcium (black)
densities; active (green circle) and reacted (red cross) sulfuric acid particles locations. (Bottom)
Temporal evolution of the total mass mass of gypsum and calcium carbonate.
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Case study 3

5 Numerical experiments

4 01111 02222 03333 0.4444 0.5556 0.6667 0.7778 0.8889 1

0.00 025 050 075 1.00
Time

Figure: (Top) Evolution of the system at specific times: spatial gypsum (orange) and calcium (black)
densities; active (green circle) and reacted (red cross) sulfuric acid particles locations. (Bottom)
Temporal evolution of the total mass mass of gypsum and calcium carbonate.
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Future Research

6 Future Research

Exploring the mean-field limit as N — oo,

Investigating a possible homogenization of the system,

Studying the application to more general reactions.
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Thank you!
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